9 Aug 2012

Data Leakage Detection


ABSTRACT:
                           A data distributor has given sensitive data to a set of supposedly trusted agents (third parties). Some of the data is leaked and found in an unauthorized place (e.g., on the web or somebody’s laptop). The distributor must assess the likelihood that the leaked data came from one or more agents, as opposed to having been independently gathered by other means. We propose data allocation strategies (across the agents) that improve the probability of identifying leakages. These methods do not rely on alterations of the released data (e.g., watermarks). In some cases we can also inject “realistic but fake” data records to further improve our chances of detecting leakage and identifying the guilty party.

 INTRODUCTION: 

                          In the course of doing business, sometimes sensitive data must be handed over to supposedly trusted third parties. For example, a hospital may give patient records to researchers who will devise new treatments. Similarly, a company may have partnerships with other companies that require sharing customer data. Another enterprise may outsource its data processing, so data must be given to various other companies.We call the owner of the data the distributor and the supposedly trusted third parties the agents. Our goal is to detect when the distributor’s sensitive data has been leaked by agents, and if possible to identify the agent that leaked the data. We consider applications where the original sensitive data cannot be perturbed. Perturbation is a very useful technique where the data is modified and made “less sensitive” before being handed to agents. For example, one can add random noise to certain attributes, or one can replace exact values by ranges . However, in some cases it is important not to alter the original distributor’s data. For example, if an outsourcer is doing our payroll, he must have the exact salary and customer bank account numbers. If medical researchers will be treating patients (as opposed to simply computing statistics), they may need accurate data for the patients. Traditionally, leakage detection is handled by watermarking, e.g., a unique code is embedded in each distributed copy. If that copy is later discovered in the hands of an unauthorized party, the leaker can be identified. Watermarks can be very useful in some cases, but again, involve some modification of the original data.
                          Furthermore, watermarks can sometimes be destroyed if the data recipient is malicious. In this paper we study unobtrusive techniques for detecting leakage of a set of objects or records. Specifically, we study the following scenario: After giving a set of objects to agents, the distributor discovers some of those same objects in an unauthorized place. (For example, the data may be found on a web site, or may be obtained through a legal discovery process.) At this point the distributor can assess the likelihood that the leaked data came from one or more agents, as opposed to having been independently gathered by other means. Using an analogy with cookies stolen from a cookie jar, if we catch Freddie with a single cookie, he can argue that a friend gave him the cookie. But if we catch Freddie with 5 cookies, it will be much harder for him to argue that his hands were not in the cookie jar. If the distributor sees “enough evidence” that an agent leaked data, he may stop doing business with him, or may initiate legal proceedings. In this paper we develop a model for assessing the “guilt” of agents. We also present algorithms for distributing objects to agents, in a way that improves our chances of identifying a leaker. Finally, we also consider the option of adding “fake” objects to the distributed set. Such objects do not correspond to real entities but appear realistic to the agents. In a sense, the fake objects acts as a type of watermark for the entire set, without modifying any individual members. If it turns out an agent was given one or more fake objects that were leaked, then the distributor can be more confident that agent was guilty.



                            

4 comments:

Unknown said...

I would really like to read some personal experiences like the way, you've explained through the above article. I'm glad for your achievements and would probably like to see much more in the near future. Thanks for share.

Java training in Chennai

Java training in Bangalore

sathish said...

After reading this web site I am very satisfied simply because this site is providing comprehensive knowledge for you to audience.
Thank you to the perform as well as discuss anything incredibly important in my opinion. We loose time waiting for your next article writing in addition to I beg one to get back to pay a visit to our website in




Selenium training in bangalore
Selenium training in Chennai
Selenium training in Bangalore
Selenium training in Pune
Selenium Online training

shiny said...

Great to read your blog.Heartful thanks for you to share additional details about java.
mobile service centre chennai
best mobile service center in chennai
mobile service center in velachery
mobile service center in vadapalani
mobile service center in porur
best mobile service center

shankarjaya said...

Good Post! Thank you so much for sharing this pretty post, it was so good to read and useful to improve my knowledge as updated one, keep blogging.
Salesforce Training in Chennai | Certification | Online Course | Salesforce Training in Bangalore | Certification | Online Course | Salesforce Training in Hyderabad | Certification | Online Course | Salesforce Training in Pune | Certification | Online Course | Salesforce Certification Online Training Courses

Post a Comment